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This paper presents the stochastic properties of orbital velocities of random water 
waves in intermediate water depth. Both the emergence effect and weak nonlinear 
effects are studied ; the theoretical predictions are compared with measured kinematics 
and the deviations from linear theory are quantified. 

This study includes new ideas in fluid dynamics. An analytic formula for probability 
distribution for velocities modified by the emergence effect as well as by nonlinearities 
of the wave motion in intermediate water depth is developed. This probability function 
gives us the first statistical moment, the second statistical moment for modified 
velocities in an analytical f i rm,  and by numerical integration the third statistical 
moment for modified velocities. 

The theoretical formulae for the statistical moments for surface elevation and for 
velocities up to third order, with nonlinearities of the motion taken into account, for 
the case when the emergence effect can be neglected, i.e. below the surface layer, have 
been developed. This includes a generalized formula for free-surface elevation setdown 
and calculation of the asymmetry of the horizontal velocity, which is found to be 
negative in agreement with measurements of Anastasiou et al. (19826). 

From the first statistical moment of the modified horizontal velocity, the mean flux 
between any two levels in the wave flume may be calculated. When the integration is 
carried out from the bottom up to + co, it leads in approximation to the formula for 
total mean flux found by Phillips (1960). This agreement with Phillips’ formula 
encourages one to interpret the positive mean value of horizontal velocities as a ‘real 
current’. This interpretation also provides a new understanding of the fluid dynamic 
implications of results presented by Tung (1975). 

Theoretical prediction of the measured kinematics has allowed a better estimation of 
the return flow in the wave flume, and in the vicinity of the mean water level currents 
in two different directions are noted. Firstly, the emergence effect gives rise to a current 
at the mean water level in the direction of the wave advance. Secondly, a flow in the 
opposite direction, interpreted as a return current in the wave flume, is noticed just 
below that level. 

1. Introduction 
For many applications in coastal and offshore engineering, it is necessary to know 

the water wave kinematics under the waves (Tmum & Gudmestad 1990; Sarpkaya & 
Isaacson 1981). Normally a random offshore wave field is characterized by a sum of 
sinusoidal waves with individual energies given by the wave spectrum; however, the 
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FIGURE 1 .  Background for the study. 

principal shortcoming of linear wave theory for irregular water waves is its 
inappropriateness in determining kinematic and dynamic parameters near the still 
water level. 

Although some improved methods have been proposed for predicting kinematics in 
the vicinity of the water surface such as those of Wheeler (1970) and Gudmestad 
(1990), it should be noted that these represent extrapolations of linear theory and do 
not satisfy the Laplace equation for fluid flow. 

Another reason for deviation from linear theory is that the free surface fluctuates 
with time, such that a point fixed in space in the vicinity of the mean water level is not 
submerged at all times but emerges from the water in some phases of the wavy motion. 
This makes the probability distributions and the corresponding spectral densities 
different from those of continuously submerged points. This emergence eflect 
(Cieilikiewicz 1985; Cieilikiewicz & Massel 1988), as it shall be referred to in this study, 
is also known as the free surface fluctuations phenomenon (Pajouhi & Tung 1975) and 
has been taken into account in this study following the approach of Tung (1975). This 
wave theory with the intermittency of submergence taken into account is, furthermore, 
referred to in the papers of Anastasiou, Tickell & Chaplin (1982a, b) and Isaacson & 
Baldwin (1990) as the intermittent random wave theory. 

The influence of the emergence effect is essential when determining the stochastic 
characteristics of particle kinematics near the mean water level. The difference between 
properties when taking into account the emergence effect and when ignoring it 
decreases considerably for points far from the free surface. On the other hand, it is well 
known that wave energy is concentrated in the vicinity of the still water level. Thus, the 
hydrodynamics in this layer is of considerable importance and should therefore be 
determined with a high degree of accuracy. 

Laboratory and field measurements of wave kinematics with emphasis given to the 
mean water level zone have been reported by Anastasiou et al. (1982a, b) and by 
Skjelbreia et al. (1989, 1991). These latter measurements will be used to demonstrate 
that the emergence effect modifies the statistics of linear wave theory near the mean 
water level according to theoretical predictions. 

In addition to the emergence effect on the statistics of wave particle kinematics, the 
influence of nonlinearity of the motion itself will be discussed in a form similar to that 
of Longuet-Higgins (1963). The background for this study is presented in figure 1 .  
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2. Theory 
2.1. Theoretical development 

In this section the formulae for the probability density and for first two statistical 
moments of particle velocities will be derived. 

Let us consider the orbital velocities u(x, z, t ) ,  where x = [xl, x,] is the location vector 
on the horizontal plane, the z-axis is directed vertically upwards and t is the time. It 
should be pointed out that the non-random parameter z of this random field is chosen 
from the interval [ - h, a, where the upper limit C (the free surface of the wave) for a 
given x and t is a random variable (h is the water depth). This means in fact that u(x, 
z ,  t )  is not in agreement with the definition of a random field. In order to treat velocity 
as a random field it can be said that for points above the free surface, the velocity is 
equal to zero with the probability equal to one. This is not obvious from a 
'philosophical' point of view because it is difficult to speak about zero velocity if there 
is no object (i.e. no water particles in this case) for which the velocity is measured. But 
this is consistent in an experimental sense since when the point under consideration is 
above the free surface, the velocimeter will give a zero value. 

Let us then for the random process Y(z), where z E (- 00, XI, introduce the modified 
random process F(z) for ZE R' by following the approach of Tung (1975) such that 

for z > X, qz) = 

where X is a random variable. 
The modified velocities of a wave field can be now defined 

{ :x, z ,  t )  for z < C(x, t )  
for z > C(x, t) ,  

ir(x,z, t )  = 

in which u = [ul, u2, u3] and ii = [a1, $, u,] are the vectors of unmodified and modified 
water wave orbital velocities, respectively. 

It is assumed that C(x,t), u ( x , z , ~ )  and rs(x,z,t) are stationary in time and 
homogeneous with respect to x. Thus, the results obtained for the random variable X 
and processes Y and F may be applied directly to the free-surface elevations 5 and 
components of u and ii, owing to the analogous form of (1) and (2). 

If the nonlinearity of the wave motion is taken into account, the random field of the 
free-surface elevation may be presented, after Longuet-Higgins ( 1  963), by the following 
formula : 

N N N 

C(x, = c t ,  6t + c a i j ( x ,  ki & + c aijk(x, t ,  ki c k  . . . > (3) 
i=l i , i= l  i , j ,  k = l  

where ai(x,  t) ,  a&, t )  . . . are non-random functions, while & are random variables, 
assumed to be independent and symmetrically distributed about zero. It is suggested 
that a similar representation may be used for the nonlinear random process Y :  

N N N 

y(z) = 2 pi(z) ki + c bij(z> ki k j  + pijk(') ki tj kk + * - - 3  (4) 
i=l  t . j - 1  i ,  j, k = l  

where, as before, the functions pi(z),pij(z) ... are not random. For the variable X it is 
assumed that there exists a representation analogous to (3) : 

N N N 

where ai, aij . . . are non-random constants. 
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by following Longuet-Higgins (1 963). Introducing 
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The probability densities for X and Y,fx(x) andf,(y ; z), respectively, may be found 

the second-order approximation is 

where 

Note that m,,, vx, A,, are constants while mol, cry, A,, are functions of z .  ,urn, are the 
central joint moments for X and Y given as 

(10) 

where ( .> is the expected value of a quantity enclosed in the angle brackets, and m,, = 

In (7) and (8) H3( .) denotes a Hermite polynomial of the third degree. Note that for 
the calculation of Hermite polynomials of the nth degree, the following relation is used: 

P m n  = ((X- ( X > ) m  (Y- ( y>In>, 

(X>, m,, = (Y>, Cx = pi03 U Y  = d z .  

H,(x) e-xp/2, (1 1) 
am (- l)m- -s2/z = 

axm 

in which it is assumed that ao/axo is a neutral operator. 
The probability that the random variable X exceeds the value z is equal to 

P [ X  > z] = J:fx(x)dx = Q*(z’). 

Here z’ = ( z  - m l o ) / r x  and 

Q*<Y) = Q<Y) H ~ ( Y )  Z(Y>, (13) 

in which QW = Z ( 4  dz- (14) 
Y 

Cieilikiewicz (1 985) obtained the following formula describing the probability 
density of the modified process Y(z) (see Appendix A): 
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where r = A,,(z) is the coefficient of cross-correlation between X and Y ;  S( .) denotes 
the Dirac’s &function and v(z’,y’; r) = (z’-ry’)/Ai in which A = 1 -rz. The function 
G in (15) is 

G(y’, z’) = HZO(~’ ,  Y’ ; r, + 3hz1  HI^(^', y’ ; r, + 3 A i z  Hoz(z’, y’ ; r )  
r 
A - ~ 0 3 - { r 2 H ~ [ ~ ( z ’ , y ‘ ;  r ) ] -  3AtrH1[7@’,y’; r)] Hl(y’)+ 3AHz(.Y’)}. (16) 

Two-dimensional equivalents of the Hermite polynomials appearing in (16) may be 
calculated using the relation 

(17) (- i)m+n____e-[yZ+gf(s,y;r)1/z a m  an = H (x,y; r ) e - [ y a + g 2 ( 2 . ~ ; r ) ~ / ~ .  
mn ax, a p  

Note that (1 5 )  represents an extension of (8) by including emergence effects (figure 1). 
Anastasiou et al. (1982b) have also calculated the probability distribution for 

particle velocity taking into account both the emergence effect and weak nonlinearities, 
but they obtained the final results by numerical integration. Moreover, the parameters 
of the probability distribution which are discussed in the next paragraphs, were 
obtained differently. 

The mean value and the second moment calculated by using (1 5)  may be written as 
(for details see Appendix A) 

(18) ( 9 )  = ma, Q*(z’) + uy Z(z’) [r+Q(rA30 H,(Z’) + 3hz1 H1(z’))], 
( 9’) = (ub + mi,) Q*(z’) + vb Z(z’) (r2Hl(z‘) +$A30 H&’) + rAzl Hz(z’) + Alz) 

+ 2m01 uY z(z’) [r+Q(rA30 H3(z‘) + 3Az1 H1(z’))], (19) 
and the variance a$@) can be calculated using the formula 

a$(z) = ( YZ) - (F)? (20) 
In (1 5 )  terms including A,, for m + n = 3 represent nonlinear effects. If one omits 

these effects, the probability density given by (15) will take a simpler form, as given by 
Tung (1975): 

(21) fu(~;z) = 11 - Q<z’)l S(Y)  +a,(z)Z(y’) Q [ v ( z ’ , Y ’ ; ~ ) I ,  
where y’ = y / a , -  Equation (21) represents the emergence effect in (15) (figure 1). 
Similarly, for the moments (Y) and (Fz) we obtain 

1 

( a )  = ruyZ(z’), (22) 
( Fz) = u; Q(z’) + r2z’Z(z’). (23) 

It can be shown easily that with z + - 00 the probability density for process F given 
by (15) becomes equal to the density for the process Y as given by (8). From (18), (19) 
and (20) it follows that: 

lim ( F) = ma,, lim ( Y2) = crb +mi,, lim v; = u;. (24) 
z+-m Z+-CU 2+-m 

Thus the emergence effect ceases to be of significance for points located deeply below 
the free surface. 

2.2. Parameters of the probability distribution for a wave field 
In order to calculate the quantities m,,, ux and A,, appearing in (7) and (9) (remember 
that X and Y play to the role of surface elevation 6 and velocity component in a wave 
field, respectively), the central statistical moments pzo and p3, for surface elevation 
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and 

where 

should be known. Starting from the basic hydrodynamic equation for fluid flow, i.e. the 
Laplace equation, and the nonlinear boundary conditions at the free surface, these 
statistical parameters can be calculated based on the free-surface spectral density. 

If the linear part of the spectrum is denoted by F(l)(k)  (Appendix B), where k is the 
wavenumber vector, then following relations hold (Cieilikiewicz 1989) : 

m,, = Ik f (  1 - tanhF2kh) F(l)(k) dk, 

,ua0 = jk jk, K3,(k, k’) F(’)(k) F(’)(k’) dk dk’, 

(25) 

pzO = Jk”(”(k) dk, (26) 

(27) 
,. 

B(k, k’) = B-(k, k’) + B+(k, k‘) - k .  k’ + ( E +  &‘) (E’);, (29) 

(31) 
and k“ = (kl tanhlklh, k’ = (k’l tanh Ik’lh. (32) 

Expression (25) for the mean water level in the case of an idealized narrow spectrum 
P ( k )  = CT; 6(k - k,) gives ( 5 )  = - cr; k,/sinh 2k, h in which k, = IkJ. If a is a slowly 
changing random wave amplitude, we obtain the well-known formula for mean water 
level setdown ( c )  = -~(a2)k,/sinh2k,h. It can be noted, that for deep water, with 
h + 00 the mean value of free-surface elevation tends to zero : 

In these formulae R = i(k2 - f 2 ) ,  R’ = -( ; k’2 - p), 

lim m,, = 0. 
h+ca 

(33) 

In order to determine the parameters of the probability function as given by (1 5) for 
modified velocities, the statistical moments for unmodified velocity quantities ought to 
be calculated together with the joint moments for them and Q up to third order 
inclusive. The relevant formulae can be found in Cieilikiewicz (1989). These are as 
follows : 

mti=O for u =  1,2,3, (34) 
k2 cosh 2k(z + h) + 1 

F(”(k)dk, u = 1,2, ”’ = I k f  cosh 2kh + 1 

F(’)(k) dk, -cash 2 k ( ~  + h) - 1 ”’ = glkk cosh2kh- 1 

J (gr k, cosh k (z + h) F‘”(k) dk, u = 1,2, 
k k  cosh kh P 2  = 

p;; = 0. 
For the statistical moments of third order we can write 

pkn = lk lv K%,(k, k’; z) F(’)(k) P ( k ’ )  dk dk’, 

(3 5 )  

(37) 
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where m, n = 0, ..., 3 and m+n = 3, and where functions KZn can be written in the 
following form : 

i k  k 
K,"(k, k ' ; ~ )  = 3gg24&"(kv-k:) C-(k ,k ' ;z)  

k k  

cosh k(z + h) cosh k ( z  + h) 
cosh kh cosh k'h + (k ,  + k:) C+(k, k' ; z)] 

in which k = [k,, k,] and 

B*(k, k') cosh k'(z+ h) 
Ei+Eri  - coshk'h C'(k, k ' ; z )  = 

and 
Next Kf; = 0, 

k' = lk'l = Ikkk'(. 

(k,-k:)C-(k,k';z) 

cosh k h  
2k' 
kz +(k,+k:) C+(k,k ' ;z)++'B(k,k ' )  

K:? = 0, 
gk: cosh k ( z  + h) 
k,@ coshk'h cosh kh 

cosh k(z + h) 
- B(k, k') K:& k'; z) = - 

for v = 1,2, (40) 

for v = 1,2, (44) 

(45) 

for v = 1,2,  (46) 

sinh k(z + h) K:i(k, k'; Z )  = g 
sinh k'h sinh kh 

1 2 
--[Ik-k'l tanhlk-k'l hD-(k,k';z)-Ik+k'l tanhIk+k'l hD+(k,k';z)] , (47) Li 

where functions Df and D- are defined as follows: 

cosh k'(z + h) Dk(k ,k ' ; z )  = C'(k,k';z)  
cosh k'h . 

It can be seen from the above formulae that the weak nonlinearities (within the 
frame of the adopted approximation) do not affect the mean values mti of particle 
velocities, which remain equal to zero (see (34)). Variances ,uyi given by (35)  and (36) 
of the orbital velocities are left unchanged (see also Appendix B). However, the 
nonlinearity of the motion leads to non-zero skewness for the horizontal velocity (see 
,ut; for v = 1,2 given by (39) and (40)). Skewness of the vertical component still remains 
equal to zero (see ptg given by (39)  and (45)). 

The influence of the emergence effect on the orbital velocities, as given in (2), 
however, leads to a modification of the probability density for the velocity from that 
expressed by (8) to the form given by (1 5). It also results in a non-zero mean value given 
by (1 8) for the horizontal velocities and in modified variances (20) for both horizontal 
and vertical velocity components. It should be noted from (18) that the mean value of 
the vertical component remains equal to zero in view of (38)  and (45). 

10 F L M  2 5 5  
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The above analysis yields the conclusion that the effectiveness and accuracy of the 
evaluation of statistical properties of velocities depends very strongly on the spectral 
density function of surface elevation. Therefore, in the following analysis of data, the 
spectral analysis will be described in some detail. 

2.3. Total mean flux 
Now, let us consider in the first-order approximation (i.e. when A,, for m +n = 3 are 
neglected) the total mean flux q = [ql, q2] with components defined as 

q, = [ (iz,(z)) dz for v = 1,2. 

By using (22) and (37) the above integrals may be rewritten as follows: 

(49) 

F(l)(k) dk] dz cosh k(z + h) 
q, = -!-r ac -h Z(z’)[ k k  (:Yk, cosh kh 

in which ac = pio is the standard deviation of the surface elevation 6. The integration 
over z can be performed without difficulty, resulting in the following form of the total 
mean flux 4,: 

q, = (3’L W( - h ; ac, k) F(l)(k) dk, 
k f coshkh 

where the function Wis defined as 
co 

W(Z,; a, k )  = cash k(z + h) Z(z) dz IZ& 
= ieuPk2/2 {e”Q(z,/a+ka) +e-”hQ(z,/a-ka)}. (52) 

The more general form of the function 

W(Z,, zb ; a, k) = cash k(z + h) Z(Z) dz c: 
can be found in Cieilikiewicz & Massel (1 988) and may be used if one needs to calculate 
the flux between elevations z, and zb. 

If we take polar coordinates (k, 0) in the k-plane, we can introduce the directional 
spectrum @(o, 0) by 

F(k) dk = F(k, 0) k dk dB = F(o,e) do d0 (53) 
and the dispersion relation 

u2(k) = gk tanh kh. (54) 
In the one-directional case, when @(u, 8) vanishes everywhere except for 0 = O,, we 
have from (51) 

q = JOm gk W( - h  ; a<, k) P(o) do, 
o cosh kh (55) 

where 
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denotes the linear part of the frequency spectrum 

S(w) = In F(w,  0) dw d0. 

In the integral (55) the wavenumber k is related to the angular frequency w by the 
dispersion relation (54). 

In the assumed approximation, the difference between S(w) and S(l)(w) can be 
neglected (see Appendix B). Assuming further that 

(i) k ,  vc 4 1 (where k ,  is the wavenumber corresponding to the peak frequency) 
and that the spectrum S(w) decays quickly enough for w + co ; 

(ii) the water depth h is large enough (in practice it is sufficient to have h > 3vc), in 
(55)  one can set Q(-h’fkac) z 1 (h’ = h/vc). Thus, the total mean flux obtains the 
following approximate form : 

Note that the above expression is accurate for infinite water depth h+ co. Because it 
is assumed that vck has a small value for k such that the corresponding w (through the 
dispersion relation (54)) gives a value of S(o) that is not infinitely small, we can find 
an even simpler form of (56). Expanding exp (.) into Taylor series gives 

(57) exp[iv;k2] = 1+fvik2+ ... x 1; 

thus 

which is a result obtained by Phillips (1 960). 
Note that, by (37), the approximate total mean flux (58) can be written as 

4 = puLI,=, = ( 5 4 4  0, t)>, (59) 
which is of a form analogous to that for the case of deterministic small-amplitude 
waves q x @(x, 0, t )  (see Phillips 1977), where bar denotes the mean value over a wave 
period. 

For deep water waves (58) can be rewritten as q = JomwS(w)dw which is the value of 
the spectral moment of the first order m,. 

3. Experiment 
3.1. E.xperimenta1 set-up 

The experimental arrangement and subsequent results discussed below are described in 
detail in papers by Skjelbreia et al. (1989, 1991). The experiments were carried out in 
a tank 33 m long, 1.02 m wide and 1.8 m deep. The irregular wave generator of this 
tank is hydraulically driven and the control signal was constructed from a JONSWAP 
target wave spectrum using JONSWAP peakedness factor y = 3.0, allowing for no 
periodicity in the free-surface signal. 

At the end of the tank, opposite the wave generator, was located a passive wave 
absorber consisting of a series of vertical perforated steel plates. The reflection 
coefficient was estimated as z 5% over a broad frequency range. 

The surface elevation for each wave case studied by Skjelbreia et al. (1989) was 
generated from one spectrum and was measured with seven standard resistive-type 

10.2 
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Statistical properties of surface elevation 

Measurement Standard 
level z Mean value deviation Skewness Kurtosis-3 

Run (m) (m) ( x (m) ( x  ( x lo-') ( x  lo-') 
30 0.20 - 1.69 5.387 2.59 1.78 
27 0.15 - 2.00 5.488 2.50 1.64 
15 0.10 - 2.08 5.675 2.65 1 s o  
10 0.05 -2.17 5.410 2.46 1.66 
25 0.00 - 1.28 5.334 2.49 1.78 
23 - 0.05 - 1.36 5.464 2.62 1.64 

1 -0.10 - 1.99 5.340 2.41 2.24 
7 -0.20 - 2.33 5.395 2.48 1.85 

16 -0.25 - 1.99 5.645 2.67 1.50 
18 -0.50 -4.18 5.361 2.55 1.97 
20 - 1.00 - 3.09 5.335 2.47 2.29 
34 - 1.105 - 2.50 5.293 2.38 2.30 

TABLE 1. LDV locations and statistical properties of surface elevation for analysed Case 5 runs. 

gauges. The special arrangement of the gauges was adopted to decompose incoming 
and reflected irregular waves (Zelt & Skjelbreia 1992). Three gauges were placed close 
to each other in order to resolve the first-order waves, while another four gauges were 
distributed along wave tank to resolve long waves. The wave gauge positions were 
accurate to 0.01 m. 

The flow velocity was measured on the centreline at a single longitudinal position 
along the tank, coinciding with one of the gauges, but at several different elevations by 
a two-component laser-Doppler velocimeter (LDV). The two velocity components 
were measured in a plane parallel to the sidewall of the tank with a measurement 
volume cross-section of approximately 100 pm in diameter. The LDV was specifically 
designed for this study and had the special feature of using only a single laser beam in 
the flow. 

The LDV allowed measurements from a wave crest down to the tank bottom but at 
one point in space only during one run. In order to obtain the distributions for the 
statistical properties of the velocity along the vertical axis it was necessary to repeat the 
experiment with exactly the same free-surface elevation spectrum but locating the LDV 
station at different vertical positions. Therefore great care was given to maintain 
reproducible wave conditions in the tank. It was found that it is very important for 
reproducibility of the wave flow to keep a constant water depth. Special attention was 
paid to measuring orbital velocity components within the surface layer. 

Each run in the test program had a duration of 819.2 s. All seven wave gauge 
channels were sampled simultaneously with the two LDV channels at a rate of 40 Hz. 

3.2. Statistical analysis of measured free-surface elevation and particle kinematics 
In order to examine the variation of the stochastic properties of velocities with z- 
elevation for one wave case, the analysis of 12 runs for various LDV locations was 
carried out. These runs, reproducing the wave conditions in the tank for a selected 
sea state as given by the significant wave height H ,  = 0.21 m and the peak period 
T, = 1.8 s (Skjelbreia et al. 1989, 1991, Case 5 -measurement series I18), are listed in 
table 1 .  

Digitization of the free-surface elevation and velocity time series was carried at a rate 
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of 40 Hz and samples of 32768 measuring points were collected. The first 2048 and last 
1024 data points for each time series were omitted in order to cancel possible transition 
effects, giving finally the N = 29696 point length sequence. 

Measurements of the particle velocity near the mean water level are to varying 
degrees influenced by the emergence effect depending upon the level at which they were 
obtained. This occurs when the probe volume of the LDV emerges from the water. 
Until the water surface moves back up to the level of the LDV the signal holds at the 
last measured value (Skjelbreia et al. 1989). Time series of particle velocities ui and wi 
were therefore modified numerically such that their values during drop-out periods 
were set equal to zero: 

[tii, Wi] = [Ui, w J X ( & - z ) ,  (60) 
in which z is the level of the LDV and X (  .) is the Heaviside unit step function. In (60), 
and below in this section, the notation has been changed for convenience. Namely, the 
subscript indicates the number of data point in the sample, while the velocity 
components are u, u,  w, i.e. u = [u, v, w] and a = [ti, i7, W ] .  Equation (60) is of course in 
agreement with (2). 

The time series Ci, ad and W i  were subjected to statistical and spectral analysis. The 
statistical analysis involved calculation of the first four statistical moments, coefficients 
of skewness and kurtosis and probability density functions for each series. Also, joint 
statistical moments for surface elevation and orbital velocities were calculated. In this 
subsection spectral analysis results of the data are presented while those concerning 
probability distributions will be discussed in the next subsection. 

For the spectral calculations segmental smoothing was required. This was done 
according to the ‘Welch method’ (Oppenheim & Schafer 1975). The sequences of 
length N = 29696 points were divided into 57 sections of M = 1024 points each. The 
segments were overlapped by one half of their length. Successive sections were 
multiplied by a Hanning window, transformed with a 1024-point FFT, summed and 
averaged. This smoothing resulted in a number of degrees of freedom equal to twice 
the number of sections that the sequence was divided into, i.e. 114. The 95% 
confidence intervals were estimated by calculating the variance of the unaveraged 
spectral estimates under the assumption of normal distribution. 

The power spectra for 51 3 frequency values evenly spaced between 0 and the Nyquist 
frequency (f, = 20 Hz) were obtained. For the wave case analysed the peak frequency 
fp z 0.56 Hz, and for the most energetic range (0,3fp) 43 values of the power spectra 
were obtained with discrete frequency spacing A f = 0.039 Hz (Aw = 0.245 rad/s). 

The measured spectra of surface elevation were used to calculate the statistical 
parameters for the particle kinematics ($2). These calculations involve numerical 
integration over frequency. In order to obtain the integrals with high accuracy and with 
a small number of function evaluations of the integrand, the adaptive recursive 
Gaussian quadrature method was used. Cubic spline interpolation was used to prepare 
function segments suitable for the computer program. 

for Run 1. It is 
noted that the measured spectrum shows no obvious secondary peak. Cases with 
higher degrees of nonlinearity were not available from Skjelbreia et al.’s series of 
experiments. It should be noted that very good reproducibility of wave conditions was 
obtained in the tank-at least when spectral density of the surface elevation is 
considered. Deeper insight into this question is obtained from examination of the first 
four statistical moments of the free-surface elevation. In table 1 the mean values, 
standard deviations, skewness and kurtosis coefficients are presented for the 12 runs of 
wave case 5 (118). Skewness is not much greater than 0.2 for each of them, which means 

Figure 2 shows the estimated spectral density of surface elevation 
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that strong deviations from the Gaussian distribution (Ochi & Wang 1984) should not 
be expected for the free surface. 

In figure 3 a histogram with 30 equally spaced bins between the minimum and 
maximum values of < for run 10 is presented, showing the estimated probability 
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distribution of the free-surface elevation. Values of pi of the histogram are scaled such 
that direct comparison with the probability density function is possible : 

n p i = L  for i = 1 , 2  ,..., 30, 
NA,  

in which N is the number of data points (29696 in this example), n, is the number of 
data points observed in the ith bin and A ,  is the width of the bin. Outliers greater than 
5 standard deviations were removed which gave a bin width of A ,  < iv5' 

It is seen from figure 3 that measured surface elevations deviate only slightly from 
the Gaussian distribution. This means that for points that are continuously submerged 
we should not expect significant deviations from the linear wave theory. 

3.3. Comparison of theoretical and observed probability distributions of velocities 
In order to calculate the probability density function and statistical moments for the 
velocities, the linear part of the spectral density should be known. In the second-order 
approximation it can be assumed (Appendix B) that 

F(k) M F y k ) .  (62) 
This means that the observed spectrum is identified by its linear part. Moreover, a case 
when all spectral components propagate in one direction only is considered. In the 
numerical integration the energy contained in the frequency interval w > 3w, was 
neglected, i.e. an upper frequency cutoff was applied. Thus the frequency spectrum was 
taken as 

in which S(o) is the measured spectral density of free elevation. 
As the wave is unidirectional, the formulae describing the moments for processes 5, 

u ($2) become much simpler. Using a polar coordinate system (k ,8 )  in the k-vector 
plane, a directional spectrum 6(w7@)  is introduced satisfying (53). Since the wave is 
unidirectional, integration over 8 may be done immediately, giving 

S(w) = S(w) 2(3w, - w),  (63) 

In the simplified expressions for unidirectional seas corresponding to (25)-(27) and 
(35)-(39) only the frequency spectrum appears. In the numerical calculations the 
integrands are expressed in terms of frequencies w and w' by the dispersion relation 
(54). 

Double integrals Iw, . . . f ( w )  f(d) dw dw' 

were calculated using the very efficient iterative procedure described in the previous 
section. 

Figures 4 and 5 show the observed probability distribution for the horizontal and 
vertical velocities for the different elevations. In the same figures the continuous parts 
of the density function given in (21) are presented leaving out the discrete part. The 
observed probability distribution for time series iii and mi are estimated and then scaled 
in the same manner as the surface elevation 5, (see (61)). The only difference is that the 
modified velocity values given in (60), which are equal to zero and correspond to Ci < 
z,  are not counted in the appropriate bin. For elevations z = -0.05 m and z = 0 m 
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the theoretical results (when the emergence effect is taken into account) are in close 
agreement with the observed values. When the measurement point of the LDV station 
is above the mean water level the agreement is slightly better when the nonlinearity of 
the wave motion is included, i.e. (1 5) compares better with the experimental data. For 
the lower position of the LDV station the differences due to weak second-order 
nonlinearities are marginal. However the emergence effect is still important for 
elevations z > -3aC In figures 4 and 5 the Gaussian probability density function is 
marked for comparison. 

The density functions for the horizontal velocity component are generally skewed 
while those for the vertical velocity are unskewed. 

Figures 6 and 7 show the variation of the mean value and standard deviation along 
the z-axis for the horizontal and vertical velocity, respectively. It can be noted that 
differences between theoretical values due to second-order nonlinear effects (( 18) and 
(19)) and without these effects ((22) and (23)) are negligible. Only slightly better 
agreement for the standard deviation of the horizontal velocity in the second-order 
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approximation can be noticed. The observed values show a high degree of agreement 
with theoretical values obtained with the emergence effect taken into account and also 
compare well with the findings of Anastasiou et al. (1982a, b). However, for the mean 
value of the horizontal velocity, the observed values do not compare well with those 
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*, observed mean values; ---, according to formula (22); 0, estimated return flow. 

obtained theoretically. It seems that the existence of the return current in a confined 
wave flume could be an explanation of that departure. The emergence effect ‘produces’ 
a positive mean value of the horizontal velocity (an apparent current) in the vicinity of 
the mean water level. This current, directed along the positive x-axis, has to be 
balanced by the return current. In this way the measured values of the horizontal 
component of the particle velocity will be influenced by the backflow in the wave tank. 
In fact it should be stated that the theory presented in 52 for horizontal velocities 
cannot be verified from the data taken from a closed wave flume. These theoretical 
results may be valid only for waves in the open sea. Note that we are not able to 
introduce the simplest solution suggested for the return flow problem, i.e. the 
assumption of a uniform distribution. We operate in the domain z E [ - h, co) and such 
an assumption would not have made sense. 

However, we can rephrase the problem. If we believe that the results obtained in $2 
are correct, then we can suggest that the difference between the predicted and the 
measured values gives an estimate of the return current in the wave flume! In figure 8 
the measured mean horizontal velocities are marked with stars for wave case 113. The 
dashed line presents the theoretical mean value of the horizontal velocities with the 
emergence effect taken into account, according to (22). Open circles show the 
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Wave 4+ A9 9; A4* 
case (rn’s-l) (m‘ s-l) X (m‘ s-l) (mz s-l) X, 
118 0.0115 1.61 x 10-4 0.014 0.0082 3.76 x 10-4 0.047 

TABLE 2. Numerical results for wave case 118. 

estimated, as described above, values of the return flow. It should be emphasized that 
the only ‘true’ part of that figure are points for the measured and estimated velocities 
of the mean horizontal velocity and the estimated return flow, respectively, as well as 
the curve for the theoretical mean horizontal velocity. The solid lines for the measured 
mean velocity and the estimated return flow should be treated as ‘intuitive guesses’ for 
the appropriate vertical mean velocity profiles. They were obtained by use of cubic 
spline interpolation. 

The interpolated profiles as well as the theoretical values for the positive mean value 
of the horizontal velocity were used to estimate the measured positive and negative 
total flows q;, q;, respectively, and the predicted positive total mean flow q+, induced 
by the waves, and the estimated return flow q-. Let us denote 

where Aqm = q+m+q; and Aq = q+ +q-. The value q+ obtainec, from theoretical 
formula (51) for wave case I1 8 is presented in table 2. It denotes the positive total mean 
flux calculated by numerical integration with the spectrum S(w) estimated from the 
time series {. Table 2 also shows the quantities Aq, Aqm obtained from numerical 
computations together with the coefficients x and xm. Note that the above values 
(except for q+ which is calculated from the theoretical expression) are influenced by the 
authors’ ‘intuitive guess’ expressed in artificial lines and that they should be treated as 
a rough estimation. Nevertheless, the numerical results obtained for x, xrn in (65) of 
order 5 %  (see table 2) indicate that the constraint of zero net mass flow seems to be 
fulfilled. 

A zero mean value of the vertical velocity for all elevations follows from (18), (38) 
and (45). This agreed very well with observations, cf. figure 7. 

Figure 9 shows the skewness of the horizontal velocity calculated with the help of 
(39) and (40) (when weak nonlinearities are taken into account). These values appear 
to be slightly negative, which is in close agreement with measured skewness at 
elevations deeply below the mean water level where the emergence effect is not 
important. Anastasiou et al. (19826) also noted the negative skewness values for 
horizontal velocity. Owing to the emergence effect the skewness becomes positive close 
to the mean water level, cf. figure 9. The theoretical predictions for the skewness of the 
horizontal velocity with the emergence effect taken into account (for cases with and 
without second-order nonlinear effects) are also presented in figure 9. They were 
obtained by numerical integration of the probability density (15) and compare well 
with the observed skewness. 

The skewness of the vertical velocity, for points below the mean water level, is zero 
in accordance with (43). This is confirmed in figure 9 where the calculated skewness of 
the measured vertical velocities is marked with open circles. 
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4. Conclusions 
It is proposed that the values of a stationary and homogeneous nonlinear random 

process can be expressed as a series of random functions while the upper boundary for 
which the process has physical values is expressed as another series of random 
variables. Through this proposal the expressions for general random fields can be 
applied to the process. Defining the modified water wave velocities of a wave field as 
the kinematics below the surface of the waves and zero above the surface, the theory 
and expressions for random fields can then be applied to water wave kinematics. 

Starting from the basic equations of hydrodynamics, the statistical properties of 
wave kinematics can be expressed in terms of the linear part of the surface elevation 
spectrum and there is no need to make assumptions regarding the analytical 
expressions for the wave kinematics. It should be noted that this allows the prediction 
of the statistics of wave kinematics knowing only the parameters or the data that are 
required to establish the wave surface elevation spectrum. 

Following the development of the theoretical predictions, wave surface and wave 
kinematics measurements are analysed, with particular emphasis on the near-surface 
kinematics. For the wave case I18 generated from an almost linear wave surface 
spectrum, it is demonstrated that nonlinearities have a marginal effect on the measured 
kinematics and that non-Gaussian parts of the statistics of wave kinematics mainly 
relate to the emergence effects. For a sea state generated from a more strongly 
nonlinear surface spectrum it is, however, expected that the effects on the kinematics 
from the surface nonlinearities would have been significant. 

Excellent correlation between the statistical measurements and predicted theoretical 
results has been found, thus demonstrating the usefulness of this theoretical 
development, the only difference found between predictions and measurements being 
that for the mean value of the horizontal velocity near the free surface. 
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An attempt is made in this paper to demonstrate that the non-zero mean horizontal 
velocity (in the Eulerian frame) resulting from taking into account the emergence effect 
should be treated as a mass transport velocity. This is done by showing that the 
formulae obtained for the total mean flux in approximation lead to the known and 
well-interpreted formulae for mass flux usually obtained in the Lagrangian frame. 

An alternative method for derivation of the mean water flux in the region near the 
mean water level is presented. The relevant formulae are developed in the Eulerian 
frame for random water waves. The approximate value of the total mean flux is 
previously known (Phillips 1960) but the approach presented in this paper is in the 
authors’ opinion more direct in the sense that only the definition of the total mean flux 
and the expression for the horizontal particle velocity are needed. Moreover, traditional 
approaches allow us only to treat the total flux like a physical quantity ‘existing on a 
subset of zero measure’, namely, exactly on the free surface of the wave. Within such 
an approach we are not able, in the Eulerian frame, to discuss the distribution of the 
mean velocity in the free-surface zone. We would then have the situation that the mean 
velocity along the vertical is everywhere equal to zero except at the free surface. In the 
present approach the mean velocity is ‘stretched out’ from the exact location of the 
surface onto the free-surface zone. More precisely, for the random wave case, 
theoretically a non-zero mean horizontal velocity should exist from z = -h to infinity 
(due to the Gaussian distribution for free surface elevation, this zone should, however, 
in practice be treated as the region near the mean water level). Moreover, we are able 
to calculate not only the total mean water flux but also the flux between two given z- 
elevations. 

The theoretical results of this study, when applied to horizontal velocities, are valid 
only in open water. It follows that these results cannot be directly verified with 
measurements taken in a wave tank. However, if we postulate that these theoretical 
results are correct, then we can suggest that the difference between the predicted and 
the measured values gives an estimate of the return current in the wave flume. 
Postulating that the formulae obtained in this paper are correct is supported by two 
factors : 

(i) that the expression for the total mean flux in approximation is known and well- 
interpreted, as was mentioned above; 

(ii) that the approach for estimating such stochastic properties of random water 
wave kinematics, which are not influenced by the return flow (i.e. mean value of the 
vertical velocity and standard deviation for both horizontal and vertical velocity 
components) agrees very well with the measurements in the wave flume. 

Experimentalists do not normally study kinematics in the free-surface zone. This is 
mainly due to technical difficulties associated with data collection in this zone. The 
measurements usually have been stopped at an elevation where interesting phenomenon 
just appear. The first measurements of wave kinematics near the mean water level (up 
to one standard deviation of the surface elevation above that level) were reported by 
Anastasiou et al. (1982a, b). The data set which has been examined in this paper is, 
however, unique in the sense that it has been possible to examine the variation of the 
velocity along the vertical axis up to a level of about four standard deviations of the 
surface elevation and down to the bottom of the wave flume with measurements spaced 
close enough to prepare the profiles for the statistical properties of the velocities. 

Reviewing the I18 wave case, currents in opposite directions to each other have been 
noticed. While the emergence effect explains the existence of a current in the direction 
of wave advance, the nature of the return current which appears just below the mean 
water level is still unresolved (at least for irregular waves). To answer the question why 
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this layer is ‘preferred’ by the backflowing water, it may be necessary to take into 
account the viscosity of the fluid in the near-boundary regions and the vorticity which 
diffuses and convects throughout the wave flume. Energy dissipation and the 
turbulence in the free-surface zone may be also important factors which influence the 
shape of the mean horizontal velocity profile. For a complete study of the problem of 
the return flow in a flume, the full three-dimensional geometry and details of wave 
absorption need to be considered. 

Further work will concentrate on evaluation of other data series to examine the 
influence of wave steepness on wave kinematics and on further prediction of return 
flow in a wave flume. 
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Appendix A 

evaluated by the theorem of total probability (Tung 1975): 
The probability density function for the modified random process F(z) can be 

fY(Y> ‘ f Y , X < Z ( Y )  P [ X  < ZI + f F , X , Z ( Y )  P [X  2 ZI, (A 1) 

wherefF,,<,(Y) = 6(Y)  and 

fylx>z(Y) = J ~fxy(x,y)dx/P[X 2 ZI. (A 2) 

The joint density fXy(x,y; z) in the second-order approximation is provided by 
Longuet-Higgins (1963) as 

2 

3Aidz) Hi, ha, %)I, (A 3) 
where T = y(x’,y’; r)  = (x’-ry’)/di and H,, = Hmn(x’,y’; r). 

integrals : 
Calculation of the conditional density in (A 2) reduces to evaluation of the following 

H,,(X’, Y’; r)  Z(Y’) z[q(x’, Y’ ; r)l dx. (A 4) l=: 
There are two kinds of such integrals - when m 2 1 and when m = 0. In the first case 
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In the case m = 0 we can write 
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Hon(x’, Y’ ; r )  Z(.Y’) Z [ ~ ( X ‘ ,  Y‘ ; r)] dx 

and then, by ( 1  l), one can obtain the following expression for the integral: 

in which Ho(x) = 1. 

to the probability density for Y(z) in the form of (15). 
Equation (A 3), through (A 5 )  and (A 7 )  (where by (12) P [ X  < z] = 1 - Q*(z’)), leads 

In order to calculate the first two statistical moments of the modified Drocess F(z), 
the values of the following integrals 

Ik mn = J+-m yk Srn Hm,(x,y; r )  z t . ~ ) z [ r ( x , y ;  r)]  dxdy 
-m x=2’ 

for k = 1,2 and m+n < 3 should be known. Integration by parts results in 

Ihn = O  for n 3 2  and I i n  = 0 for n 2 3. 

Successive integrals are given as 
+m 

where the following relation was used : 

a Furthermore Iil = - Srn y (Hlo(z’, y ; r )  Z( y )  Z [~(Z’ ,  y ; r ) ] }  dy. 
--m 

Integrating by parts, using (A 1 1 )  leads to 



Orbital velocities of random water waoes 

a r 
- Q[v<z‘, Y ;  r)l = I Z[V(~’ ,  Y ; r)l aY Af 

297 

(A 14) Since 

we have 1’ 00 = - ~ I ~ [ ~ ~ ( $ Z ( y ) ) Q [ q ( z ’ , y ; r ) ] d y  = rdiZ(z’). 

Successive integrals for k = 2 can be obtained in the same manner. Their values are 

Appendix B 
As mentioned in $2.1, the random field of the free surface elevation c(x, t )  may be 

represented by (3). For this stationary and homogeneous random field there exists, on 
the other hand, the following Stieltjes-Fourier representation : 

[(x, t )  = Jk dA(k) exp [i(k - x - wt)] ,  (B 1) 

in which dA(k) is a complex random field. The representation given by (B 1 )  allows 
one to define the continuous spectral density F(k) by 

(dA(k) dA*(k’)) = F(k) S(k - k’) dk dk‘ (B 2) 
where an asterisk denotes complex conjugate. 

order, forced components (see Tick 1959). Thus we can write 
The spectrum F(k) contains energy associated with both the first and the higher- 

F(k) = F y k )  + P ( k )  + . . . , (B 3) 
where F(’)(k) and F(’)(k) are the first- and second-order parts of the spectrum F(k), 
respectively. 

For the free-surface displacement Q the random variables ti in (3), for say, i = 1, .  .., 
N = 2N’ are specified according to Longuet-Higgins (1963) such that 

(i) ti can be divided into two groups: i = 1, . . ., N’ and i = N ’ +  1, . . ., N ,  
(ii) their variances 6 = (ti) are 

(a:) for i =  1, ..., N’  
for i =  N ’ + 1 ,  ..., N ,  

where ai, i = 1, . . ., N’,  associated with wavenumber k,, are the first-order amplitudes 

According to Longuet-Higgins (1963), the relation between the variances K and the 
of 5. 

spectral density F(k) is such that when N +  00 each --f 0 in such a way that 

F‘l’(k)dk = C < = z (B 5)  
k t c d k  & . E d &  

i e { l .  ..., N ’ )  ic(Nk1, _.., N )  

over any small but fixed region in the k-plane. This means that when N + G O  (and 
N’+0O) 

(B 6) 
N N 

jkF(l)(k)dk = C 6 = z K. 
i= l  i-N’fl 
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Where series xi ... &, appear, one can then obtain integrals by 

Z . . . Q +  Ik . . . F(l ) (k )  dk. 
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N '  N 

x...q, 
i=l i=N'+l N'*m 

or N+m 

The first three statistical moments of the random variable X 
discussed. It can be shown that these moments can be expressed 
follows : 

N 

rn, = x aii K +  ..., 

puz = C aiai Q + 2  C. aijaij Q 5+ ..., 

p3 = 6 C a,ajaij 

i=l 

N N 

i-l i ,g=1 

N 

5+ .... 
i , j = l  

In a first-order approximation one obtains 
N 

m, = 0, p2 = aiai &, p3 = 0. 
i=l 

In the next approximation due to Longuet-Higgins (1 963) 
N N N 

will hereafter be 
in terms of as 

m, = x a,, K, p2 = C ai a, Q, p3 = 6 2 aiajaii & 5, (B 10) 
i=l i=l i, j - 1  

which means that, in this approximation, terms of order V 2  can be neglected when 
compared with terms which are of order V. 

By the assumption of stationarity and homogeneity one can in the case when X is 
specified as the free-surface elevation consider the special point x = 0 and time t = 0. 
For this case Longuet-Higgins (1963) has shown that 

1 for i =  1, . . . ,N'  
0 for i =  N'+l ,  ..., N .  

ai ={ 
Thus, in view of (B 10) and (B 7) at second order 

N 

,u2 = C & = F'"(k)dk (B 12) 
i=l b 

when N ' +  co. 
On the other hand, it is obvious that ,u2 = j, F(k) dk, which means that the difference 

between the true value of the variance p2 and the calculated value as given by (B 12), 
in view of (B 8) is of order 

N' 

JkF(')(k)dk = x 52, & 5, 
i , j = l  

where Qij is a certain constant associated with the pair of wavenumber vectors (k,, kj). 
In order to obtain the parameters of the probability distribution given by (15) (which 
are primarily given in the form of series xi ... K, &, ... 5 c), (B 7) demonstrates 
that the linear part of the spectrum P ( k )  must be known. In the authors' opinion, 
however, there is no need to split the spectrum into its first- and second-order parts 
for practical calculations. Within the assumed accuracy, the linear part of the spectrum 
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can be approximated by the full spectrum. This is consistent with Longuet-Higgins’ 
(1963) second-order approximation given by (B 10) but contrary to Anastasiou et al. 
(1982b). In fact, under such an assumption (i.e. using F(k) instead of P ( k ) ) ,  the first 
two statistical moments, which are of order V, are obtained with an error of order V 2  
(while for the free-surface elevation 6 the ‘ideal’ variance is obtained), and third 
moments, being of order V 2 ,  are calculated with an error of order V4. 
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